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(An Action Selection Calculus) 

 

Abstract 

 

This paper describes a unifying framework for five highly influential but disparate theories of 

natural learning and behavioral action selection. These theories are normally considered 

independently, with their own experimental procedures and results. The framework presented 

builds on a structure of connection types, propagation rules and learning rules, which are used in 

combination to integrate results from each theory into a whole. These connection types and rules 

form the Action Selection Calculus. The Calculus will be used to discuss the areas of genuine 

difference between the factor theories and to identify areas where there is overlap and where 

apparently disparate findings have a common source. The discussion is illustrated with exemplar 

experimental procedures. The paper focuses on predictive or anticipatory properties inherent in 

these action selection and learning theories, and uses the Dynamic Expectancy Model and its 

computer implementation SRS/E as a mechanism to conduct this discussion.    

 

Action Selection, Learning Theory, Behaviorism, Conditioning, Expectancy Model, Anticipation 
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1    Introduction 

This paper reviews and then proposes a unifying approach to five highly influential classic theories of 

animal behavior, action selection and natural learning. These are Stimulus-Response (S-R) 

behaviorism, the associationist model, classical (Pavlovian) conditioning, operant (or instrumental) 

conditioning and Sign-learning or means-ends (pre-cognitive) models. Collectively, these will be 

referred to as the five factor theories. During the 20th century, each theory attracted strong proponents 

and equally strong opponents and each was dominant for a time. These theoretical positions are 

placed in their historical context in this paper. The legacy established by these theories endures and 

each retains a strong influence on elements of contemporary thinking.  

Each theoretical position is supported by (typically large numbers of) detailed and fully repeatable 

experiments. None of these theories completely explains the full range of observable behaviors for 

any animal species and none was able to gain an overall dominance of the others. It is argued here that 

is useful to consider each as a partial theory. Each explaining – often in remarkable detail – some 

limited aspect of the complete behavioral and learning repertoire of each animal. And that to better 

understand the overall behavior of an animal each of the theories must be placed into a single unifying 

context.  

However, the fact remains that the consequences of each of these theoretical positions can be 

demonstrated in a single animal – though not all animal species will necessarily demonstrate every 

attribute. Each is made manifest in the animal according to the experimental procedures and 

circumstances to which it is subjected. In developing the unifying approach, examples will be drawn 

widely from the animal and animat (artificial or simulated animal) research domains and these will be 

balanced between the contemporary and historical context. Each of the five factor theories is 

characterized by the underlying assumption that observable and measurable behavior results from 

sensations arising from the interaction between the general environment of the organism (including its 

body) and its sense organs. The issue under debate was, and remains, the principles by which this 

interaction is to be characterized. In itself, overt behavior gives little immediate indication of which, 
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indeed, if any, of these theories best describes the internal action selection mechanism that gives rise 

to the observable behavior. 

The task here, then, is to provide a minimal description of the principles underlying the 

mechanisms involved that recognizes natural diversity, yet covers the range of phenomena observed. 

The approach here is reductive, abstracting from the mass of experimental detail to reveal a broader 

unifying context. Starting with these five theoretical positions, a semi-formal system is developed 

consisting of three connection types, five propagation rules for behavioral action selection and four 

learning rules. This is the Action Selection Calculus. The purpose of this endeavor is to isolate the 

principal properties of the five factor theories in relation to the behavioral action selection problem 

and to construct an overall framework with which to consider the role of particular instances of action 

selection behavior within the complete behavioral repertoire of an individual animal or species.  

The Action Selection Calculus developed here provides a framework for describing behavioral 

action selection and learning typically found in non-human animals. While the five factor theories can 

be applied to certain aspects of human behavior and may form a significant substrate to low-level 

human behavior, it is clear that even taken together they substantially fail to explain the diversity and 

richness of the human behavioral repertoire. Outstanding progress has been made in the cognitive 

sciences (e.g. Boden, 2006 for a broad view) in the years since the five factor theories were 

propounded and the direct influence of these theories on our understanding of human behavior is now 

very restricted. Nevertheless, the continuing contribution of these theoretical positions and the 

detailed animal experimentation that underpins them should not be undervalued. The Action Selection 

Calculus both revives and integrates these theories into an operational model of animal action 

selection.  

Equally, the Artificial Intelligence Machine Learning community has contributed greatly to our 

understanding of the basic principles of human and animal learning, notably in the areas of 

Reinforcement Learning (Kaelbling, Littman and Moore, 1996; Sutton and Barto, 1998) and Artificial 

Neural Networks (Bishop, 1995). See Langley (1996) for a broader review of Machine Learning 

techniques.  
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The development of this Action Selection Calculus stands as a theoretically and computationally 

motivated experiment to reify and formalize these different (and sometimes competing) models of 

learning and action selection. It is not the purpose of this paper to reject or deny any of the factor 

theories, but rather to postulate a mechanism by which they might all be manifest in the one animal or 

animat, each (one can only presume) serving a valuable function within the creature as a whole, so as 

to enhance its overall chances of survival.  

The Calculus does not presuppose any particular class or species of animal, yet the elements of the 

Calculus cannot be uniformly applied across the animal kingdom, as it is clear that the underlying 

factor theories cannot be applied uniformly either. Razran (1971) relates the occurrence of different 

behavioral and learning strategies to position in the phylogenic scale, pointing out that S-R 

mechanisms are ubiquitous and that almost all animals with even a rudimentary nervous system may 

be classically conditioned. Operant conditioning and means-ends behavior are both clearly manifest in 

mammalian species. Opinions vary widely as to the relative importance that should be placed on each 

of the factor approaches, most standard texts (e.g. Bower and Hilgard, 1981; Hergenhahn and Olson, 

2005) treat them separately without any significant attempt at integration. This is now addressed by 

this paper. Significant pieces of work that attempt an integration of two or more of the factors are 

identified in section 2. 

The rat might well serve as an exemplar of an individual animal that clearly demonstrates all the 

attributes of the Calculus, with simple S-R reflexes, a rich innate repertoire of individual and social 

behaviors, which has been used extensively in the laboratory to demonstrate both classical and 

operant conditioning, as well as means-ends behaviors. The simulation experiments described later in 

the paper are abstracted animat style emulations of the type conducted with rats in the laboratory. 

Barnett (1973), for instance, provides a comprehensive account encompassing both the natural 

behavior of the rat and its behavior within the confines of various laboratory procedures. 

The Action Selection Calculus notation developed here highlights certain aspects of the problem. It 

is by no means the only possible notational approach, each of which predisposes its own emphasis. 

Emphasis is placed on the role of anticipation and prediction, both as a guiding principle by which 
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organisms may express their fitness for the environment they inhabit and as a mechanism to achieve 

learning and behavioral action selection – the anticipatory stance.  

All the connection types in the Calculus are between Signs (stimuli), detectable sensory conditions, 

and Actions (responses), behaviors that may be expressed by the animal or animat. There are many 

possible combinations of Signs and Actions. The three selected here each encapsulate an anticipatory 

or predictive role, one implicitly, and two making and using explicit predictions.    

This paper also identifies where the factor theory mechanisms clearly differ and where they 

apparently differ, but can be explained as manifestations of a single type of mechanism and how these 

differences may be resolved into a single structured framework. It sheds light on why it has 

traditionally been so hard to resolve between responsive and goal directed action selection approaches 

and considers the development of motivation across this boundary (e.g. Brooks 1991a; 1991b; Kirsh, 

1991). The role of reinforcement and predictive anticipation in the learning process is also 

investigated and the properties of these two approaches compared. Perhaps surprisingly, this analysis 

reveals that two of the approaches, namely, operant conditioning and means ends – long regarded as 

diametrically opposed – may be expressed by a common mechanism.  

The Action Selection Calculus is an abstraction of the 20 Dynamic Expectancy Model (DEM) 

postulates (Witkowski, 2003). These are a detailed specification for the action selection and learning 

properties of the Dynamic Expectance Model. The 20 postulates also form a high-level specification 

for the actual (C++) computer implementation of the DEM, SRS/E. The SRS/E program has been used 

to conduct a substantial battery of simulation tests (Witkowski, 1997), mimicking or replicating actual 

experimental procedures on animals. A small selection will be presented to illustrate points made in 

this paper. Aspects of SRS/E will be used to reify specific attributes of the Action Selection Calculus. 

Section 2 provides a thumbnail sketch of each of the five factor theories. This paper is not intended 

as a detailed review of the evidence supporting each theory, each of which is already a digest of many 

exemplar and corroborating experimental procedures. Comprehensive descriptions of the five theories 

and their evidential support can be found in any textbook of natural learning theory (e.g. Bower and 

Hilgard, 1981; Hergenhahn and Olson, 2005). Section 3 considers the sensory and motor interface 

between animal and its environment and how issues of behavioral motivation might be addressed. 
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Sections 4, 5 and 6 respectively build the arguments for the structural, behavioral and learning 

components of the combined approach. Section 7 reconstructs the major factor theories in the light of 

these component parts and emphasizes the role of the action selection policy maps1, which may be 

either static or dynamic2. Section 8 describes an arbitration mechanism between these policy maps, 

leading to final action expression. Section 9 presents some illustrative experiments to show various 

properties of the Action Selection Calculus. Section 10 presents some discussion of the topics raised 

in this paper. Appendix one tabulates and defines the notation commonly used throughout. Appendix 

two describes aspects of the SRS/E design and implementation. 

2    Theories of Action Selection Behavior and Learning in Animals 

We continue with the view that animal behavioral action selection is properly described by the direct 

or indirect interaction of sensed conditions, Sign-stimuli (S) and response, action or behavior (R) 

initiators. This section will briefly outline five major theoretical positions initially formulated in the 

first half of the 20th century relating to animal behavior and learning and summarizes the continuing 

influence they have exerted on subsequent thinking. In particular it will focus on those issues relating 

to action selection, which will be considered in detail later. In each case the basic principles will be 

considered from a historical perspective, but each will be illustrated with examples of research drawn 

from the recent and contemporary corpus.  

2.1    The Stimulus-Response (S-R) Behaviorist Approach  

It has been a long established and widely held truism that much of the behavior observed in natural 

animals can be described in terms of actions initiated by the current conditions in which the animal 

finds itself. This approach has a long tradition in the form of stimulus-response (S-R) behaviorism3. 

Although this was proposed in its modern form over a century ago (Thorndike, 1898), it still 

continues to find proponents, for instance in the behavior based models of Maes (1991), the reactive 

or situated models of Agre (1995) and Bryson (2000), and was a position vigorously upheld by 

Brooks (1991a, 1991b) in his “intelligence without reason and representation” arguments.  
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All argue that the majority of observed and apparently intelligent behavior may be ascribed to an 

innate, pre-programmed, stimulus response mechanism available to the individual. Innate intelligence 

is not, however, defined by degree. Complex, essentially reactive, models have been developed to 

comprehensively describe and (so largely) explain the behavioral repertoire of several non-primate 

vertebrate species, including small mammals, birds and fish. This is clearly seen in the pioneering 

work of ethologists such as Baerends (1976), Lorenz (1950), and Tinburgen (1951). Travers (1989) 

presents a computer simulation of the stickleback’s innate reproductive behavior. Hallam, Hallam and 

Halperin (1994) a simulation of aspects of behavior in the Siamese fighting fish. Several schemes for 

partitioning behaviors have been proposed. These include Tinburgen’s (1951) Innate Releaser 

Mechanism (IRM) hierarchical scheme and Brooks’ (1986) robot subsumption architecture. Tyrrell 

(1993) provides a useful summary of a variety of action selection mechanisms drawn from natural and 

artificial examples. This mapping of stimulus situation to action response will be referred to here as 

the Static Policy Map (SPM) for an animal or animat.  

Behaviorist learning is considered to be reinforcement, or strengthening of the activating bond 

between stimulus and response (e.g. Hull, 1943, for an extensive treatment of experimentally induced 

reinforcement in animals) in the presence of a rewarding outcome – the law of effect. That is, the 

occurrence of a desirable event concurrently (or immediately following) an application of the S-R pair 

enhances the likelihood that the pairing will be invoked again over other alternative pairings, 

conversely, with a reduced likelihood for undesirable (aversive or punishing) events. In principle, new 

pairings may be established by creating an S-R link between a stimulus and a response that were 

active concurrently with (or immediately preceding) the rewarding event.  

Reinforcement Learning (RL) methods (Kaelbling et al., 1996; Sutton and Barto, 1998) propose 

that reward may be propagated from states that are directly associated with reward to states that are 

not in order to construct an optimal state-action policy map to achieve reward in the long term. 

Reinforcement learning techniques are grounded in a heritage long established by the dynamic 

programming, learning automata and optimization research communities (e.g. Bellman, 1957; 

Howard, 1960). Many of the formally justifiable results in RL arise from modeling in a Markov 

Decision Process (MDP) environment (Howard, 1960). The Markov condition refers to the 
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independence of states, each from the others, and from actions taken by the agent. In a variant, the 

Partially Observed MDP (POMDP), the agent is unable to reliably determine the current state it is in. 

Actor-critic models (Barto, 1995; Sutton and Barto, 1998) separate the behavior selection function 

(Actor) from the learning-signal function (Critic), which typically compares the actual reward with an 

estimate, to then update the policy settings. Barto (1995) proposes RL as a model of learning and 

action selection in the Basal Ganglia, though this view is not itself without critics (Dayan and 

Balleine, 2002; Khamassi, Lachèze, Girard, Berthoz and Guillot, 2005). Sutton (1991) has proposed 

RL as a model of animat maze following and this is considered further in section 9. 

2.2    The Associationist Model 

A second theoretical position, broadly characterised by the term associationist (Bower and Hilgard, 

1981, Ch. 2), concerns the direct associability and anticipation of cell clusters or stimuli following 

repeated pairings of activations. Learning in this model is often referred to as Hebbian Learning (after 

Hebb, 1949; see also a recent perspective on this work by Sejnowski, 1999). The adaptive properties 

of correlated activations between neural cell assemblies has been extensively studied as an indicator 

of underlying neural mechanisms (e.g. Bi and Poo, 2001, for a recent review). Several theoretical 

models have been proposed based on Hebbian learning principles (Sejnowski, Dayan and Montague, 

1995), and been employed in a number of application areas, such as covariance learning (Minai, 1997; 

Sejnowski, 1977) and principal component analysis (Oja, 1992). While of greater significance in other 

aspects of animal and brain modelling, this approach does not specifically incorporate an action 

component and discussion of it will be restricted here to a supporting role in the action selection 

context. 

2.3    Classical Conditioning 

A third, deeply influential, approach to animal learning developed during the 1920s as a result of the 

work of Ivan Pavlov (1849-1936), now usually referred to as classical conditioning. The procedure is 

well known and highly repeatable. It is neatly encapsulated by one of the earliest descriptions 
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provided by Pavlov (1927). Dogs naturally salivate in response to the smell or taste of meat powder. 

Salivation is the unconditioned reflex (UR), instigated by the unconditioned stimulus (US), the meat 

powder. Normally the sound of (for instance) a tone does not cause the animal to salivate. If the tone 

is sounded almost simultaneously with the presentation of meat powder over a number of trials, it is 

subsequently found that the sound of the tone alone will cause salivation. The sound has become a 

conditioned stimulus (CS). The phenomena is widespread, leading Bower and Hilgard (1981, p. 58) to 

comment “almost anything that moves, squirts or wiggles could be conditioned if a response from it 

can be reliably and repeatably evoked by a controllable unconditioned stimulus”. One might 

conjecture that, if a simple reflex provides protection or preparation for the animal, then anticipation 

of that need by the CS will pre-empt the outcome to the animal’s advantage. 

The conditioned response develops with a characteristic sigmoid curve with repeated CS/US 

pairings. Once established, the CS/UR pairing diminishes if the CS/US pairing is not regularly 

maintained, the extinction process. We may note that the scope of the US may be manipulated over a 

number of trials to either be highly differentiated to a specific signal, or conversely gradually 

generalized to respond to a range of similar signals (for instance, a tone of particular frequency, 

versus a range of frequencies about a center). Higher-order conditioning (Bower and Hilgard, 1981, p. 

62) allows a second neutral CS’ (say, a light) to be conditioned to an existing CS (the tone), using the 

standard procedure. CS’ then elicits the CR. Long chains are not, however, easy to establish or 

maintain.  

The classical conditioning procedure is highly repeatable and is easily demonstrated across a wide 

range of reflexes and species. It has been extensively modelled both by implementation and 

mathematically. Rescorla and Wagner (1972) produced an influential classical conditioning model 

relating the effects of reinforcement in conditioning to associative strength – the degree to which the 

CS is “surprising”. Sutton and Barto (1987; 1990) extend the Rescorla and Wagner model of classical 

conditioning using an actor-critic architecture based on the temporal difference RL model.  Recently, 

Courville, Daw and Touretzky (2006) have re-cast classical conditioning into a Bayesian 

interpretation. See also Balkenius and Morén (1998), and Vogel, Castro and Saavedra (2004) for 

recent reviews of classical conditioning models. 
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2.4    Operant Conditioning 

A radically alternative view of learning was proposed by B.F. Skinner (1904-1990), that of 

instrumental or operant conditioning (Bjork, 1993, for a review of Skinner’s life and work). In this 

model, responses are not “elicited” by impinging sensory conditions, but “emitted” by the animal in 

anticipation of a reward outcome. Reinforcement strengthening is therefore considered to be between 

response (R) and rewarding outcome (O), the R-O model, not between sensation and action, as in the 

S-R model. One might conjecture that the instrumental approach underpinning this effect allows the 

animal to learn, unlearn and take actions that achieve specific needs on a direct basis. 

Operant conditioning is illustrated by reference to an experimental apparatus developed by Skinner 

to test the paradigm, now universally referred to as the “Skinner box”. In a typical Skinner box 

experiment the subject animal (typically a rat) operates a lever to obtain a reward, say a small food 

pellet. As a preliminary step, the subject animal must be prepared by the experimenter to associate 

operating the lever with the food reward. However, once the subject is conditioned in this manner the 

apparatus may be used to establish various experimental procedures to investigate effects such as 

stimulus differentiation, experimental extinction, the effects of adverse stimuli (“punishment 

schedules”) and the effects of different schedules of reinforcement (such as varying the frequency of 

reward). As the apparatus may be set up to automatically record the activities of the subject animal 

(lever pressing), long and/or complicated schedules are easily established.  

Operant conditioning has found application in behavior “shaping” techniques, where an 

experimenter wishes to directly manipulate the overt behavioral activities of a subject, animal or 

human. In the simplest case the experimenter waits for the subject to emit the desired behavior and 

immediately afterwards presents a reward (a rat must be prepared in this way before it can be used in 

a Skinner box). Importantly, it is to be noted that the R-O activity may be easily manipulated so as to 

occur only in the presence of a specific stimulus, which may in turn be differentiated or generalized 

by careful presentation of reward in the required circumstances.  

This has lead to the assertion that operant conditioning is properly described by as three-part 

association, S-R-O. The stimulus (S) itself now appears to act as a conditioned reinforcer, where it 
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previously had no inherent reinforcing properties. In turn, a new response in the context of another 

stimulus (Sy) and response (Ry) may be conditioned to the existing triple (Sx-Rx-O): 

Sy-Ry-Sx-Rx-O  

Chains of considerable length and complexity have been generated in this way. They have been 

used, for instance, in the film industry to prepare performing animals (Bower and Hilgard, 1981, pp. 

178-179). It is, of course, a given that the rewarding outcome is itself a sensory event with direct 

(innate) association with some condition the subject wants (or in the case of aversive condition, does 

not want). For instance, if the subject animal is not hungry when offered food, the connection will not 

be manifest and might not be formed. It is also the case that an apparently non-reinforcing sensory 

condition can attain reinforcing properties if presented in conjunction with an innately reinforcing 

(positive or negative) one, the secondary or derived reinforcement effect (Bower and Hilgard, 1981, 

p. 184). Derived reinforcers will also condition responses unrelated to the original one.  

Whilst enormously influential in its time, only a relatively small number of computer models 

directly follow this approach (e.g. Saksida, Raymond and Touretzky, 1997). Schmajuk (1994) 

implements Mowrer’s (1956) “two-factor” theory, incorporating both classical and operant 

conditioning effects. Bindra (1972) has also presented a formulation to combine these two 

approaches. Dayan and Balleine (2002) discuss issues of reward and motivation in a classical and 

instrumental conditioning based on an RL formulation in a neurological context.   

2.5    Sign-learning  

The final model to be considered is derived from Tolman’s (1932) notion of a Sign-Gestalt 

Expectancy, a three part “basic cognitive unit” of the form S1-R-S2, in which the occurrence of the 

stimulus S1 in conjunction with the activity R, leads to the expectation or prediction of the outcome 

S2 (which may or may not be “rewarding”). This is largely equivalent to Catania’s (1988) description 

of the fully discriminated operant connection as a three-part contingency of “stimulus – response – 

consequence”, but with the essential difference that it is the identity of the outcome that is to be 

recorded, rather than just a measure of the desirability or quality of the connection as assumed in 
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purely S-R behaviorist or operant conditioning approaches. The formulation developed here is derived 

from a set of 13 postulates originally devised by MacCorquodale and Meehl (1953), later refined by 

Witkowski (2003). These encapsulate the main tenets of Tolman’s theoretical position in a manner 

tractable to modeling and analysis. The interpretation adopted here emphasizes the predictive nature 

of the link and this is used both in generating behavior sequences and to drive the learning process.  

Tolman was a pioneer of what is now the established cognitive school within psychology (see 

MacCorquodale and Meehl, 1954, for a broader retrospective of Tolman’s work). His aims included 

being able to demonstrate that animals were capable of both explicit problem solving and “insight”, 

that they could anticipate outcomes of their actions and so avoid potential problems. He instigated a 

number of ingenious experiment types, among them latent learning and place learning (Bower and 

Hilgard, 1981, ch. 11), that remain key differentiators between the properties of the S-R behaviorist 

and expectancy components of the Calculus to be presented here. These experiment types are 

considered later in the paper (section 9) as part of a discussion of the role of Reinforcement Learning 

(RL, section 2.1) and the anticipatory approach. Tolman’s means-ends approach inspired and remains 

one of the central techniques of Artificial Intelligence problem solving and planning techniques (e.g. 

Russell and Norvig, 2003, sections II and IV). The Dynamic Expectancy Model (DEM) (Witkowski, 

1998; 2000; 2003) and the Anticipatory Classifier System (ACS) model (Stoltzmann, Butz, Hoffmann 

and Goldberg, 2000) represent recent three-part action selection and learning models. Butz, Sigaud 

and Gérard (2003) present a summary of recent explicitly anticipatory models. 

3    Sense, Action and Valence 

For largely historical reasons, sensations are widely referred to as stimuli in this body of literature and 

the actions or behaviors generated as responses. This is not entirely satisfactory, as it largely fails to 

capture the range of interpretations required by the five factor theories taken together. Consequently, 

this paper will refer to the sense-derived component as a sensory signature or Sign and denote such 

events by the symbol S. Sub-scripts will be used to differentiate Signs where necessary. Equally, the 

term “response” seems pejorative and the more neutral term Action will be preferred, similarly 

abbreviated to A. Each Action will have associated with it an action cost, ac, indicating the time, 
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effort or resource required to perform it. Any Action may also be assigned an activation level, 

determined according to the rules presented later. Once activated, an Action becomes a candidate for 

expression, in which the Action is performed by the animal and may be observed or measured 

directly. 

A Sign is defined as a conjunction of detectable conditions (or their negations, acting as inhibitory 

conditions), typically drawn directly from the senses. Any Sign where all the conditions currently 

hold is said to be active. A Sign may be activated by some very specific set of detected sensory 

conditions, or be active under a wide range of conditions, corresponding to differentiated or 

generalized sensing.  

Signs and Actions may be taken as representational placeholders for activations in the brain. It has 

long been known that there is a close mapping between the external afferent (sensory) and efferent 

(motor) pathways and specific areas of the cerebral cortex. For instance, the sensory and motor 

“homunculi” of Penfield and Rasmussen (1950), between the eye and highly differentiated responses 

in the visual cortex (Hubel and Wiesel, 1962), “place” or “grid” representations of locations in 

physical space in the hippocampus (O’Keefe and Nadel, 1978) and medial entorhinal cortex (Hafting, 

Fyhn, Molden, Moser and Moser, 2005), or barrel representations of whisker activation in the rat 

somatosensory neocortex (Welker, 1976; Leergaard, Alloway, Mutic and Bjaalie, 2000). Such 

mappings appear to be ubiquitous within the mammalian brain (Kaas, 1997) and are no doubt 

represented to a greater or lesser extent in other vertebrates.  

Any Sign that is anticipated, but not active, is termed sub-active. Sub-activation is a distinct 

condition from full activation. It is important to distinguish the two, as the prediction of a Sign event 

is not equivalent to the actual event and they have different propagation properties.  

Additionally, any Sign may assume a level of valence (after Tolman, 1932), the extent to which 

that Sign has goal like properties, indicating that it may give the appearance of driving or motivating 

the animal to directed action selection behavior. Valence may be positive (goal seeking or rewarding) 

or negative (initiating avoidance behaviors or being aversive). A greater valence value will be taken 

as more motivating, or rewarding, than a lesser one. Some Signs will hold valence directly, some via 

propagation from other Signs holding valence, sub-valence.  
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While long-standing notions of what constitutes motivation in humans (e.g. Maslow, 1987) and 

animals (e.g. Bindra and Stewart, 1966) remain contentious, recent studies have indicated several 

areas of the (mammalian) brain are directly implicated in initiating or sustaining overt behavior types 

(Sewards and Sewards, 2003, for review). They identify areas correlating strongly with primary 

drives: hunger, thirst, sexual activity, fear, nurturance of infants, motivational aspects of pain, sleep 

and social dominance, by the strong correlation of stimulation (or disruption to brain tissue by lesion) 

with activation or suppression of behaviors associated with these “drive” types. These areas may 

themselves be affected, directly or indirectly, by physiological change (hunger, thirst), hormonal 

balance (sexual activity) or by connection to other brain areas. It seems likely that these areas, or 

those mirroring them, also have sensory attributes.  

As with activation and sub-activation (anticipatory), the valence and sub-valence (motivating) 

properties may also be propagated between Signs under the conditions described in section 5. In the 

SRS/E implementation model, any Sign that is a direct source of valence is deemed satisfied once it 

has become active and its motivating valence properties are automatically cancelled.  

4    The Forms of Connection 

This paper proposes that the principal effects of the five factor theories can be adequately explained 

by the Action Selection Calculus by adopting a combination of three connection types and that their 

underlying function is to provide a temporally predictive link between different Sign and Action 

components. This section describes the structure and principal properties of the three connection types 

used. Section 5 describes the way in which prediction, activation and valence propagates across these 

different connection types. Section 6 then describes the way in which new connections are formed and 

the strength of existing connections modified by anticipatory learning processes. 

While noting that the model described here is highly abstracted, its biologically inspired 

background grounds it in the notion that, in nature, these abstract links represent physical neural 

connections between parts of the animal’s nervous system and brain. These links, and such properties 

as sub-activation and valence, represent conjectures (from experimental observation) about the 

function of the brain that may be corroborated or refuted by further investigation. Note that these 
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connection type definitions are derived from observation of external behavior, not inference about 

what function neural structures might serve. 

Two of the abstract link types proposed below are bi-directional. Propagation effects across these 

links are asymmetric and these properties are discussed in section 5. This is not intended to imply that 

“bi-directional neurons” are necessary, only that the structures that construct these linking elements 

have a complexity suited to the task. Where the animal does not possess a link or type of link (on the 

basis of its genetic makeup) it will be congenitally incapable of displaying a corresponding class of 

action selection behavior or learning. Of course, there are many other possible connection formats 

between arbitrary combinations of Signs and Actions; but it will be argued that these are sufficient to 

explain the principal properties of the five factor theories. 

Connection type SA:     S1  w t±τ (A ∧ SV) 

Connection type SS:      S1  v, c
t±τ S2

Connection type SAS:   (S1 ∧ A)  v, c
t±τ  S2   

While SA connections have only an implicit anticipatory role, connection types SS and SAS are 

both to be interpreted as making explicit anticipatory predictions. The symbols used in this paper are 

defined and described below. Their meanings are also summarized in Appendix one.  

The SA connection is a rendition of the standard S-R behaviorist mechanism, with a forward only 

link from an antecedent sensory condition initiating (or at least predisposing the animal to initiate) the 

action A, as represented by the link “ ”. This symbol should definitely not be associated with logical 

implication, its interpretation is causal not truth preserving. The symbol t will indicate temporal delay 

(with range “±τ”), which may be introduced between the sense and action parts. The (optional) Sign 

SV is postulated as a mechanism for reinforcement learning and is not required where learning across 

the connection (updating w) is not observed. The conjunctive connective symbol “∧” should be read 

as “co-incident with”.  

In keeping with standard behaviorist modeling, w will stand to indicate the strength, or weight, of 

the connection. This weight value will find application in selecting between candidate connections 
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and in considering reinforcement learning. Traditionally, the strength of the stimulus and a habituation 

mechanism for the action would also be postulated (Hull, 1943, for a comprehensive discussion of 

these and related issues). Specifically, the strength or likelihood of the response action will be 

modulated by the strength of the stimulus Sign.  

4.1 Explicitly Anticipatory Connection Types 

Connection type SS notates a link between two Signs and indicates that Sign S1 anticipates or predicts 

the occurrence of Sign S2 within the specific time range t±τ in the future. This is indicated by the right 

facing arrow in the link symbol “ ”. The valence value, v, of S1 is a function of the current value of 

the valence value of S2 and is therefore associated with the left facing part of the link.  

Where the value t±τ is near zero, the link is essentially symmetric, S1 predicts S2 as much as S2 

predicts S1. This is the classical Hebbian formulation (Hebb, 1949; Bi and Poo, 2001). Where t is 

greater than zero (negative times have no interpretation in this context), the link is considered 

asymmetric and predictive. The assertion that S1 predicts S2 is no indicator that S2 also predicts S1. As 

the relationship between the two Signs is not necessarily causal, the animal may hold both hypotheses 

simultaneously and independently, as separate SS connections. 

The SAS connection differs from SS by the addition of an instrumental Action on the left hand 

side. The prediction of S2 is now contingent on the simultaneous activation of both S1 and the action 

A. The interpretation of the corroboration value c and the temporal offset t and range τ remain the 

same. Transfer of valence v to S1 needs to now be a function of both S2 and the action cost (ac) of A. 

This connection can be read as “the Sign S2 is anticipated at time t in the future as a consequence of 

performing the action A in the context of S1”. Equally, it may serve as an instrumental operator: “to 

achieve S2 at time x in the future, achieve S1 at time x-t and perform action A”. Such links also take 

the form of independent hypotheses, giving rise to specific predictions that may be corroborated.  

The corroboration value, c, associated with each SS or SAS link records the probability that the 

left hand (condition) side of the link correctly predicts the Sign (consequence) on the right hand side. 

A discounting strategy is used in SRS/E to update the corroboration value gives greater weight to the 

outcome of recent predictions (whether they succeed or fail) and successively discounts the 
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contribution of previous predictions. The rate at which this discounting occurs is controlled by two 

numeric factors α, the corroboration rate, and β, the extinction rate, respectively controlling the 

discounting rate for successful and unsuccessful predictions. The generic corroboration value update 

rule used in SRS/E, incorporating α and β, will be considered in section 6.1.  

5    The Forms of Propagation 

The five “rules of propagation” presented in this section encapsulate the operations on the three 

connection types with regard to the five factor theories. The rules define (i) when an Action becomes 

a candidate for expression, (ii) when a Sign will become sub-activated, (iii) when a prediction will be 

made, and (iv), when a Sign will become valenced by propagation.  

In the semi-formal notation adopted below active(), sub_active(), expressed(), valenced() and 

sub_valenced() may be treated as predicate tests on the appropriate property of the Sign or Action. 

Thus, active(S1) will be asserted if the Sign denoted by S1 is active. The disjunction “∨” should be 

read conventionally as either or both, the conjunction “∧”as “co-incident with”. On the right hand side 

of the rule, activate(), sub_activate(), predict(), sub_valence() and set_valence() should be taken as 

“internal actions”, operations taken to change the state or status of the item(s) indicated. 

Rule P1 Direct Activation:  

For each SA link,  
if (active(S1) ∨ sub_active(S1))  
then activate(A, w) ∨ set_valence(Sx, v) 

Rule P2 Sign Anticipation:  

For each SS link,  
if (active(S1) ∨ sub_active(S1))  
then sub_activate(S2) 

Rule P3 Prediction:  

For each SS link,  
if(active(S1))  
then predict(S2, t±τ) 

For each SAS link,  
if(active(S1) ∧ expressed(A))  
then predict(S2, t±τ) 

Rule P4 Valence transfer:  

For each SS link,  
if(valenced(S2) ∨ sub_valenced(S2))  
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then sub_valence(S1, f(v(S2), c)) 

For each SAS link,  
if(valenced(S2) ∨ sub_valenced(S2))  
then sub_valence(S1, f(v(S2), c, ac(A))) 

Rule P5 Valenced activation:  

For each SAS link,  
if(active(S1) ∧ sub_valenced(S1))  
then activate(A, v’) 

Rule P1 (Direct Activation) expresses the standard S-R behaviorist rule. It is included here on the 

strength of that basis alone, evidential support for this form of link is widespread and not contentious. 

Only in the simplest of animals would the activation of action A lead to the direct overt expression of 

the action or activity. As there is no assumption that Signs are mutually exclusive (the Markov 

property), many actions may become candidates for expression. The simplest strategy involves 

selecting a “winner” based on the weightings and putting that action forward to the effector system for 

external expression. In the SRS/E implementation model, goal setting is considered a form of direct 

action behavior, so the rule is shown permitting the activation of an Action, or the setting of a valence 

value, v, to any nominated Sign, Sx.  

Rule P2 (Sign Anticipation) allows for the propagation of anticipatory sub-activation. The effect is 

instantaneous, notifying and allowing the animal to modify its action selection strategy immediately 

in anticipation of a possible future event, such as initiating a conditioned reflex (section 2.2). 

Evidence for the sign anticipation rule is derived from primary and second order classical 

conditioning studies, where short chains of apparently anticipatory Sign-stimuli can be established 

experimentally (section 2.2). Evidence from these studies would further indicate that sub-activation 

propagates poorly (i.e. is heavily discounted).  

Rule P3 (Prediction) allows for a specific prediction of a future event to be recorded. This calls for 

a limited form of memory of possible future events, analogous to the more conventional notion of a 

“memory” of past events. Under this formulation, predictions are created as a result of full activation 

of the Sign and actual expression of the Action, and are therefore non-propagating. Predictions are 

made in response to direct sense and action and are employed in the corroboration process (section 

6.1). This process is distinct from sub-activation, which is propagating, but non-corroborating. Rule 
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P3 is a conjecture based on the notion of latent learning (Thistlethwaite, 1951). The act of predicting a 

future Sign event and its subsequent corroboration providing a source of internal “reward” that is 

independent of an external reinforcing signal.  

Rule P4 (Valence Transfer) indicates the spread of valence backwards along chains of anticipatory 

links. The sub_valence() process is shown in different forms for the SS and SAS links, reflecting the 

discounting process mentioned earlier. As an exemplar, in the SRS/E model valence is transferred 

from S2 to S1 across the SAS link according to the generic formulation: v(S1) := v(S2) * (c / ac(A)). By 

learning rules L2 and L3 (section 6.1) link corroboration, 0 < c < 1 and action cost ac(A) ≥ 1.0 (by 

definition in SRS/E), the valence value associated with the left hand Sign S1 will always be less than 

that for the right hand Sign S2, i.e. v(S1) < v(S2). Valence propagates preferentially across high 

confidence links with “easy” (i.e. lower cost value) Actions. This propagated value may be interpreted 

as a cost estimate of performing the Action. Given that the propagated values relate to discounted 

predictions, the relationship of this method to Bayesian inference should be noted (e.g. Bishop, 1995). 

Valence therefore spreads throughout the network of links starting from any primary source of 

valence, any S1 Sign adopting the highest (best) valence value if there are multiple paths to it. Note 

here that the valence value v’ refers to the valence value of the Sign holding direct valence (the top-

goal). This transfer mechanism, implemented as a simple variant of the established A* graph traversal 

algorithm (Hart, Nilsson and Raphael, 1968; Nilsson, 1971), is straightforward and has proved robust 

in operation in SRS/E. Valence transfer is rapid (i.e. at propagation rates) and is independent of the 

predictive timing component t±τ. As the sources of valence change, the functional, though not 

physical, structure of this graph changes also.  

This process builds a Dynamic Policy Map (DPM), assigning a valence value to each Sign that can 

be reached from the original source of valence by repeated application of P4. The mapping indicates 

the Action associated with the Sign on the path of minimized total estimated cost to the directly 

valenced Sign (from each SAS link). 

Evidence for valence transfer is derived from several sources in the factor theories. Most directly 

in the conditioned reinforcer effect (section 2.4), in which a reinforcing effect is propagated along a 
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chain of stimulus-response-stimulus (modeled as SAS links) events in animal shaping techniques. It is 

also a central tenet of the Sign-learning approach (section 2.5), in which valence or motivation is 

propagated backwards (“means-ends”) until a suitable condition is encountered to trigger the 

activation of an Action (by P5). That chains of considerable length may be formed is evidence that 

valence propagates well under these conditions. The secondary or derived reinforcing effect (section 

2.4) provides strong evidence for valence transfer across SS links. That valence transfer is maintained 

by a primary source of valence may be trivially demonstrated by removing the original source of 

valence and noting that the expression of directed behavior is suppressed.  

Rule P5 (Valenced Activation) indicates the activation of any Action A where the antecedent Sign 

S1 is both active and valenced within the current Dynamic Policy Map. As with rule P1, many Actions 

may be affected. The one associated with the highest overall S1 valence value is selected. The rule 

may be inferred from the effect of placing an animal at given points (identified by stimulus Signs) in a 

shaped behavior chain and noting that it selects the Action appropriate to that point in the chain 

(though care must be taken as there is no guarantee the Markov property, independence of states, 

holds in animal perception). It is central to the notion of action selection from a dynamic policy map. 

The choice process by which the various activated Actions give rise to the action to be selected for 

overt expression is the subject of section 8. For a simple S-R only (rule P1) system, this might be 

summarized as selecting the action associated with the highest weight value, but there must be a 

balance between the actions activated by rule P1 and those by P5.  

6    The Forms of Learning 

This section describes the conditions under which learning will take place. In the action selection 

model presented, the net effect of learning is to modify the Actions or activities to be expressed (and 

so the observable behavior of the animal) in response to a particular motivating Sign. Each of the five 

factor theories takes a particular position on the nature of learning.  

In the first, reward based learning, learning is taken to be a consequence of the animal 

encountering a valenced situation following an action – one that is characterized as 

advantageous/disadvantageous and thus interpreted as “rewarding” (or not) to the animal. This is 
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frequently referred to as reinforcement learning (section 2.1). There are a wide range of reinforcement 

learning methods, so a generic approach will be adopted here. 

In the second, anticipatory learning, “reward” is derived from the success or otherwise of the 

individual predictions made by the propagation rules given in section 5. In one sense, the use of link 

type SAS, as described here, can be seen as subsuming link types SA and SS, but the converse does 

not hold. In the SA link, the role of anticipation in the learning process is implicit but is made explicit 

in the SS and SAS type links.  

Learning rule L1 (the reinforcement rule): 

For each SA link  
if (active(A) ∧ (valenced(SV) ∨ sub_valenced(SV)))  
then update(w, α) 

This is a generic form of the standard reinforcement rule. If the action is followed by any Sign (SV) 

that provides valence, then the connection weight w will be updated by some proportional factor α. 

Several well established weight update strategies are available, such as Watkins’ Q-learning (Watkins 

and Dayan, 1992) and Sutton’s temporal differences (TD) method (Sutton, 1988), see Sutton and 

Barto (1998) for review, section 2.1. In each the net effect is to increase or decrease the likelihood that 

the link in question will be selected for expression in the future.  

6.1 Methods of Anticipatory Learning 

A central tenet of the anticipatory stance described in this paper is that certain connective links in the 

model make explicit predictions when activated. Recall that propagation rule P3 creates explicit 

predictions about specific detectable events that are anticipated to occur in the future, within a specific 

range of times (denoted by t±τ). The ability to form predictions has a profound impact on the animal’s 

choice for learning strategies. This section considers the role played by the ability to make those 

predictions.  

Learning rule L2 (anticipatory corroboration): 

For each (SS ∨ SAS) link  
if(predicted(S2, -t±τ) ∧ active(S2))  
then update(c, α) 
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Learning rule L3 (anticipatory extinction): 

For each (SS ∨ SAS) link,  
if(predicted(S2, -t±τ) ∧ ¬active(S2))  
then update(c, β) 

Learning rule L4 (anticipatory link formation): 

For each (SS ∨ SAS) link, 
if(¬predicted(Sx) ∧ active(Sx))  
then create_SAS_link(Sy, Ay, Sx, t, τ)  
or create_SS_link(Sy, Sx, t, τ) 

These three rules encapsulate the principles of anticipatory learning and are applicable to both SS 

and SAS link types. Three conditions are significant. First, where a Sign has been predicted to occur 

and the predicted Sign occurs at the expected time. The link is considered corroborated and is 

strengthened (corroboration rule L2). Second, where a Sign prediction is made, but the event does not 

occur, the link is considered dis-corroborated and weakened (extinction learning rule L3). Third, 

where a Sign occurs, but was not predicted. The immediately preceding circumstances are used to 

construct a new link that would predict the event were the recorded circumstances (Sy, Ay) to reoccur 

in the future (anticipatory link formation rule L4).  

The SRS/E computer implementation employs a simple but robust, effective and ubiquitous update 

function for the link corroboration value, c, for each SS and SAS rule. For each successful prediction 

made by the link the anticipatory corroboration rule L2 is invoked. The new value of c for the link is 

given by c := c+α (1-c), where (0 ≤ α ≤ 1). For each failed prediction the extinction rule L3 is 

invoked, the new link corroboration value is given by c := c-β(c), (0 ≤ β ≤ 1). These update functions 

are asymptotic towards 1.0 (maximum) and zero (minimum) respectively for successful and failed 

prediction sequences. The net effect of these update rules is to maintain a form of “running average” 

more strongly reflecting recent predictions, with older predictions becoming successively discounted, 

tending to zero contribution. Where no prediction was made by a link, the corroboration value c 

remains unchanged regardless of the occurrence of S2. This is consistent with the notion that a link is 

only responsible for predicting an event under the exact conditions it defines.  
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Particular settings of α and β values are specific to the individual animal. The greater the values of 

α and β, the more aggressively recent events are tracked and the contribution of past events 

discounted. The values of α and β may be set arbitrarily for any individual. There are no obvious 

“optimal” values, the animal appearing, to an observer, more or less persistent in its expressed 

behavior under different conditions. In the exemplar experimental procedure of section 9.3, the value 

of β sets the extinction rate for c of the failed SAS link and so determines the time to action selection 

policy change. The emulated experiments described in section 9 use (empirically determined) system 

default values of 0.5 and 0.2 for α and β respectively. 

Learning rules L2 and L3 reflect the conventional notions of strengthening by reinforcement (L2, 

α) and weakening by extinction (L3, β), which is common to each of the forms of learning considered 

here. The discounting form of the generic rule for SRS/E is ubiquitous throughout the natural (e.g. 

Bower and Hilgard, 1981) and machine learning (e.g. Kaelbling et al., 1996) literature, and in 

artificial neural networks (e.g. Bishop, 1995).  

Where a Sign event occurs, but is currently unpredicted by any link, this is taken as a cue to 

establish a new link, using the anticipatory link formation rule L4. The link is formed between the 

unpredicted event (as S2) and some recently active event (as S1) at time t. Where an SRS link is 

created, some expressed Action Ay contemporary with the new S1 is also implicated. Without any a-

priori indication as to which new links might be effective, higher learning rates can be achieved by 

forming many links and then allowing the corroborative learning rules L2 and L3 to separate the 

effective from the ineffective with each successive prediction – competition by corroboration. The 

choice of how many new links are formed and the range of values for t and τ are specific to the 

individual animal. The SRS/E model incorporates a learning probability rate parameter, λ, which 

determines the probability of a link being formed given the opportunity to do so (section 9). The 

learning probability rate reflects the observation that tasks typically take many trials to learn (such as 

the preliminary step of establishing operant behaviors, section 2.4, prior to operant testing).  

Learning by L4 may proceed from tabula rasa and is rapid while much is novel. In a restricted 

environment, link learning will slow as more is correctly predicted, but will resume if circumstances 
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change. Link learning in neural tissue does not necessarily imply the growth of new neural pathways, 

rather the adoption of existing uncommitted ones for a specific purpose. The natural structure of the 

brain may therefore strongly determine what can and cannot be learned. Shettleworth (1975), for 

instance, reports that certain behaviors are much more amenable to (classical) conditioning than 

others in the golden hamster.  

No rule for link removal is considered here, but has been discussed elsewhere in the context of the 

Dynamic Expectancy Model (DEM). Witkowski (2000) considers the rationale for retaining links 

even when their corroboration values fall to very low values, based on evidence from behavioral 

extinction experiments (Blackman, 1974). The behavioral extinction properties for operant and 

instrumental conditioning procedures are substantially different. Extinction in Classical conditioning 

is typically rapid with successive uncorroborated trials. Instrumental extinction typically occurs only 

after an extended number of uncorroborated trials (Blackman, 1974). This may be taken as further 

evidence that the detailed properties of SS and SAS links are inherently different. Evidence would 

suggest that extinguished links are not lost, as the conditioning effect can spontaneously reappear after 

a refractory period. 

7    Explaining the Five Factors 

This section returns to the action selection factor theories outlined in section 2 (associationism is 

given no further treatment here, except insofar as it supports the others). Each is discussed in turn in 

terms of the link types, propagation rules and learning rules presented and discussed in sections 4, 5 

and 6. As previously indicated, each theory supports and is supported by an (often substantial) body 

of experimental evidence, but that each theory in turn fails to capture and explain the overall range of 

action selection behaviors displayed by any particular animal or species. The conceptually simpler 

approaches are covered by single links and rules; some require a combination of forms, yet others are 

to be re-interpreted in the light of this formulation.  

7.1   Stimulus-Response Behaviorism and Static Policy Maps 

With no embellishments, S-R behaviorism is reduced to connection type SA and propagation type P1. 

The underlying assumption of these strategies is to tailor the behavior of the organism, such that the 
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actions at one point sufficiently change the organism or its environment such that the next stage in any 

complex sequence of actions becomes enabled and is indicated by the ensuing sensory conditions. 

This is the static policy map. SRS/E records these connections in a list, effectively ordered by the 

weight parameter, w. Recall that the weighting value w, and hence the ordering, may be modified by 

reinforcement learning (Sutton, 1988; Sutton and Barto, 1998; Watkins and Dayan, 1992; section 2.1). 

Static policy maps should not, therefore, be thought of as unchanging or unchangeable. Some 

behaviors appear completely immune to modification by learning, such as the egg recovery behavior 

of the greylag goose (Tinbergen, 1951), others modifiable by learning to varying extents 

(Shettleworth, 1975) according to function and apparent purpose. 

Given a sufficient set of these reactive behaviors, the overall effect can be to generate 

exceptionally robust behavioral strategies, apparently goal seeking, in that the actually independent 

elements of sense, action and actual outcome combinations, inexorably leads to food, or water, or 

shelter, or a mate (Bryson, 2000; Lorenz, 1950; Maes, 1991; Tinbergen, 1951; Tyrrell, 1993). The key 

issue here is that the animal need have no internal representation of the potential outcome of the 

action it takes (Brooks, 1991b); the circumstances suited to the next stage in the chain of behavior 

arising purely as a consequence of the previous action. If the chain is broken, because the action fails 

to lead to the next appropriate situation, other elements of the policy will be expressed. In some cases, 

such as in the courtship rituals of some avian species, a clearly identifiable set of displacement 

behaviors, such as preening or aggression, may be noted when this occurs (Tinbergen, 1951). 

Such strategies can appear remarkably persistent and when unsuccessful, persistently inept. Any 

apparent anticipatory ability in a fixed S-R strategy is not on the part of the individual, but rather a 

property of the species as a whole. With sufficient natural diversity in this group strategy, these 

strategies can be very robust against moderate changes in the environment, at the expense of any 

individuals not suited to the changed conditions.  

7.2   Classical Conditioning 

Reactive behaviorism relies only on the direct activity of the Sign S1 to activate A, this is the 

unconditioned stimulus (US) to the unconditioned response (UR): the innate reflex. As reflexes are 
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typically unconditionally expressed (i.e. are localized or have high values of w) the US invariably 

evokes the UR. Rule P1 allows for sub-activation of the S1 Sign. Therefore, if an anticipatory SS 

connection is established between a Sign, say SX and the US Sign S1, then activation of SX will sub-

activate S1 and in turn evoke A, the conditioned response (CR).  

Note the anticipatory nature of the CS/US pairing (Barto and Sutton, 1982), where the CS must 

precede the US by a short delay (typically <1s). The degree to which the CS will evoke CR depends 

on the history of anticipatory pairings of SX and S1. It is dynamic according to that history, by the 

corroborative learning rules L2 and L3, the rates depending on the values of α and β. If the link 

between CS and US is to be created dynamically, then learning rule L4 is invoked. The higher order 

conditioning procedure allows a second neutral Sign (SY) to be conditioned to the existing CS (SX), 

using the standard procedure: SY now evokes the CR. This is as indicated by the propagation of sub-

activation in P2. 

Overall, the classical condition reflex has little impact on the functioning of the policy map of 

which its reflex is a part. Indeed, the conditioned reflex, while widespread and undeniable, could be 

thought of as something of a curiosity in learning terms (B.F. Skinner reportedly held this view). 

However, it provides direct, if not unequivocal, evidence for several of the rule types presented in this 

paper.  

7.3   Operant Conditioning 

Operant conditioning shapes the overt behavior of an animal by pairing the actions it takes to the 

delivery of reward. The experimenter need only wait for the desired action and then present the 

reward directly. This is typified by the Skinner box apparatus, in which the subject animal (typically a 

hungry rat) is trained to press a lever to obtain delivery of a food pellet reward (section 2.4). This link 

is interpreted as an anticipatory one. The action anticipates the sensory condition (food), which, as the 

rat is hungry, holds valence. Further, the experimenter might present the food only when the action is 

taken in some circumstances, not others. The animal’s behavior becomes shaped to those particular 

circumstances. These are the conditions for the SAS connection type. This is equivalent to Catania’s 

(1988) notion of an operant three-part contingency of “stimulus – response – consequence”.  
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The association between lever (S1), pressing (A) and food (S2) is established as a SAS link by L4. 

When the action is preformed in anticipation of S2, the link is maintained, or not, by L2 and L3 

according to the outcome of the prediction made (P3). While food (S2) retains valence and the rat is at 

the lever, the rat will press the lever (P5). In the absence of any alternative it will continue to do so. 

Action selection is now firmly contingent on both encountered Sign and prevailing valence. 

Due to valence transfer rule (P4) such contingencies propagate. Were the rat to be in the box, but 

not at the lever, and some movement AM would take to rat from its current location SC to the lever SL, 

then the SAS contingency (SC∧AM)  SL would propagate valence to SC from SL and result in AM 

being activated for expression. Once the rat is satiated, the propagation of valence collapses and the 

expression of these behaviors will cease.  

The valence propagation rule P4 allows for secondary or derived reinforcement effects (Bower and 

Hilgard, 1981, p.184), in which a normally non-reinforcing Sign may be paired with an innately 

valenced one across an SS link. The valence propagation rule P4 is also consistent with the secondary 

or derived reinforcement effect (section 2.4). This allows for the establishment of behavior chains 

over successive SAS links, where the sequence is built backwards one step at a time from the primary 

source of valence.  

7.4  Tolman’s Sign-learning Model 

Where the Skinner box investigates the properties of the individual SAS link, which may be explored 

in detail under a variety of different schedules, Tolman’s work primarily used mazes. Rats, in 

particular, learn mazes easily, recognize locations readily and are soon motivated to run mazes to food 

or water when hungry or thirsty. Mazes are also convenient experimentally, as they may be created 

with any desired pattern or complexity. 

Choice points and other place locations (section 3) in the maze may be represented as Signs (a rat 

may only be in one location at once, though this may also be incorrectly or ambiguously detected) and 

traversal between them as identifiable Actions. Every location-move-location transition may be 

represented as an anticipatory SAS connection. Recall that these links are only hypotheses – errors, or 

imposed changes to the maze are accommodated by the learning rules L2, L3 and L4.   
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It is now easy to see that, when placed in a maze, the animal may learn the structure as a number of 

SAS connections with or without (i.e. latently, section 9) the presence of valence or reward. Novel 

locations encountered during exploration invoke L4 and the confidence value c is updated each time a 

location is revisited, by corroboration learning rules L2 or L3. Once encountered, food, when the rat 

is hungry may impart valence to a location (Link SS, by P4). 

7.4.1   Dynamic Policy Maps 

If at any time a location becomes directly or indirectly linked to a source of valence (i.e. food to a 

hungry rat), this valence will propagate across all the SAS (and indeed SS) links to establish a 

Dynamic Policy Map (DPM). This takes the form of a directed graph of all reachable Signs. In SRS/E 

this is considered as a form of modified breadth first search (section 5), in which each Sign node is 

assigned the highest propagated valence value. Again, this generic “spreading activation” process, as 

implemented in SRS/E, is both computationally fast and robust in operation. The dynamic policy map 

is distinguished from the static map by virtue of being constructed on demand from independent links. 

An identical set of links may give rise to a completely different action selection policy according to 

the prevailing source of valence. 

Once created, each Sign implicated in the DPM is associated with a single Action from the 

appropriate SAS link, the one on the highest value valence path, indicating its current rank in the 

dynamic policy map. Given this one to one ordered mapping an action may be selected from the DPM 

in a manner exactly analogous to a static policy map. In this respect, the behavior chaining technique 

described in section 2.4 looks to be no more than an attempt to manipulate the naturally constructed 

dynamic policy to favor one sequence of actions to all the others. 

The dynamic policy map must be re-evaluated each time there is a change in valence or any 

learning event takes place (i.e. almost everytime). Sometimes this has little effect on the observable 

behavior, but sometimes has a dramatic and immediate effect, with the animal reversing its path or 

adopting some completely new activity, figure 4, section 9, illustrates this. 
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8   Combining Static and Dynamic Policy Maps 

For any animal that displays all the forms of action selection, it becomes essential to integrate the 

effects of innate behaviour, the static policy map, with the valence driven dynamic policy map. The 

dynamic policy map is transient, created only when a Sign has valence (goal like properties) and must 

interleave with the largely permanent static policy map. This may be achieved by postulating a single 

subsumption point (after Brooks, 1986) switching candidate actions for expression between the static 

and dynamic policy maps.  

The numerical valence value of the original valence source (v’ from section 6, the top-goal) is 

equated to the range of numerical SA connection weight values, w. While this numerical value of the 

top-goal v’ is greater than any static action (v’ ≥ active(w)), actions are selected only from the DPM 

and static map selection is suppressed. If at any point v’ < active(w), say because a higher priority 

condition has arisen, DPM action selection is suspended and actions are again taken directly from the 

static policy. Several papers in Bryson, Prescott and Seth (2005) indicate the Basal Ganglia as the 

neural seat of this “winner-take-all” selection policy. SRS/E postulates that there are always low-

priority exploratory (random) actions to be taken when there are no other candidates for static or 

dynamic maps; inactivity or rest may also be considered as viable candidates. 

This allows for high-priority innate activities, such as predator avoidance, to invariably take 

precedence over goal directed activities. As the valence of the goal task increases, say with increasing 

hunger, the chance of it being interrupted in this way decreases. After an interruption from static 

policy map actions, valenced action selection from the dynamic policy map resumes. The DPM must 

be reconstructed, as the animal’s situation will have been changed and static policy actions may also 

have given rise to learned changes.  

As behavior patterns become more complex, the notion of a simple ordered static policy map 

model becomes increasingly problematic. Groups of closely related actions need to be coordinated. A 

case in point would be a typical vertebrate breeding sequence (Lorenz, 1950; Tinbergen, 1951), of 

say, territory acquisition, courtship, mating, nest building and rearing; each stage being intricate 

within itself, leading to the next if successful, but also being completely inappropriate at any other 
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time. The completion of one stage then leaves the animal in a circumstance suitable for the activation 

Sign of the next stage, and so on. Interleaved with these activities, the animal must still feed, sleep 

and defend itself from predators or competitors.   

Tinbergen (1951) proposed the use of hierarchical Innate Releaser Mechanisms (IRM) to achieve 

this. In each case, the releasing enabler should take its place in the static ranking precedence, with all 

its subsidiary SR connections simultaneously enabled, but then individually ranked within that 

grouping for final activation by stimulus.  

Maes (1991) proposes an alternative approach (later refined by Tyrrell, 1994) in which behavior 

strategies are defined in terms of innate, unlearnt three part (SAS) links joining sources of motivation 

to an ordered chain of appetitive (seeking) and consummatory (achieving) action types. Unlike a 

dynamic policy map, such mappings are fixed but become enabled en-bloc by valencing a single 

motivating Sign, by the repeated application of valence propagation rule P4. This represents a 

plausible evolutionary intermediate step between pure S-R action selection and learned, dynamically 

activated, policy maps.  

9   Evaluating Static and Dynamic Policy Maps in the Action Selection Calculus Context 

To illustrate some of the issues that arise from the Action Selection Calculus this section will look at 

the role of reinforcement and action selection that arises from the use of static and dynamic policy 

maps. The example chosen will be a discussion of a simple maze learning task, as might be performed 

by a rat in the laboratory.  

The question under consideration is the role of external reinforcement and the distinction in 

behavioral action selection terms between reinforcement learning strategies and the dynamic policy 

map strategy. Three illustrative experiments will be discussed. First, the latent learning procedure, 

which is used to investigate the role of explicit reward in learning. This is considered to be a classic 

test to determine whether a task is being performed by an animal within a static (RL) or dynamic 

policy regime. Second, this is complemented by a discussion of the potential effect of external reward 

in the context of the anticipatory learning. The third describes a “portmanteau” procedure illustrating 
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several aspects of valenced operation and DPM construction, combining a number of different 

existing procedures. 

The basic form of the simulation follows that defined by Sutton (1991). The animat is placed in a 

grid based maze area, in which the animat may make one move Action at each cycle, Up, Down, Left 

or Right to an adjacent cell. Various cells may be blocked off and the animat will not move if it 

attempts to enter one of these cells, or if it encounters the boundary. Each grid square is represented 

by a location Sign, this is consistent both with the requirements of the MDP representation (section 

2.1) and for SRS/E (appendix two). 

9.1   Latent Learning 

Figure 1 replicates the results of a classic latent learning experiment (Witkowski, 1998; after 

Tolman and Honzig, 1930), indicating that external reinforcement is not required for learning (section 

2.1). Tolman argued that if reward were required for learning, then a hungry rat that was allowed to 

explore a maze would have no cause to learn the structure of the maze if there was no reinforcement. 

This is the situation with, say, Q-Learning (Watkins and Dayan, 1992; section 2.1), where a source of 

reward is mandatory. Reinforcement Learning is predicated on the notion that actions are selected on 

the basis of predictions of reward. Learning cannot proceed in the absence of any reward injected into 

the system4. Learning by anticipation (rules L2 and L4) is independent of reward, predicated only on 

the success and failure of internal predictions. The structure of the maze that is learnt, “reward” (food) 

only providing the motivating valence and expression (propagation rules P4 and P5) once it is 

encountered.  

In the original experiment, three groups of hungry rats (simulated here as valenced animats) are 

made to run a maze from a start point (bottom) to a constant end location (top) 20 times, (one trial per 

day in the original rat experiment). For group one, the end location (top) always contains food. For 

group two, the end location does not contain food until the eleventh trial. For the control group three, 

the end point never has food. 

 

           *** FIGURE 1 ABOUT HERE ***                 *** FIGURE 2 ABOUT HERE *** 
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The differential prediction for this experiment is clear. If the animal is employing reinforcement 

learning, a gradual improvement in performance is expected by group one from the first trial; 

similarly a gradual improvement by group two, starting at day 11, but only once reward is introduced. 

The control group is not expected to show any significant improvement over the complete experiment. 

If, on the other hand, anticipatory or latent learning has occurred, group two will show a clear and 

immediate improvement in performance once food is encountered and a DPM can be constructed. 

Note that in figure 1 it takes on average about 400 random steps to traverse the maze, 11 steps for 

the shortest route (log scale). Figure 1 is from the animat emulation, but exactly mirrors the changes 

in performance noted in the original experiments (traces are averages of 100 experimental runs, each 

with a different random starting seed). The simulation learning parameters are chosen to approximate 

the animal learning rates (λ = 0.25). Group one show gradual improvement as they learn the maze, as 

expected from a reinforcement-based interpretation (and consistently with anticipatory learning). 

Group three, the control, continue to wander the maze, showing no particular change throughout. 

Group two, however, model the control group until the twelfth day, but then show a marked 

improvement in performance once the reward has been discovered. It is interesting to note that the 

performance of group two exceeds that of group one on the 12th trial. Individuals in group one are 

obliged to pursue the food by the best route they have at each trial, limiting exploration of better 

alternatives, but group two are able to explore the maze thoroughly – the explore-exploit tradeoff 

(Kaelbling et al., 1996). 

9.2  The Role of Reward in Anticipatory Learning  

Latent learning experiments demonstrate that learning in rats need not depend on external 

reinforcement, at least under these conditions, and that this can be emulated in animats also using the 

rules of the Action Selection Calculus. However, anticipatory learning need not be independent of 

reinforcement by reward. Figure 3 shows the speed-up effect of biasing link learning (Valence Level 

Pre-Bias, VLPB) by L4 in a similar (simulated) animat maze learning task as group two (section 9.1), 

such that every opportunity is taken to learn a link (link formation rule L4) if it is or has ever been 

associated with valence (learning probability rate λ = 1.0), but only occasionally (10%, λ = 0.1) 
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otherwise. In the without VLPB trace λ = 0.1 unconditionally. Learning is significantly more rapid 

under the VLPB conditions. It makes much sense to bias learning resources to those things 

immediately relevant to motivated behavior and this postulated mechanism allows an organism to 

balance speculative latent learning with task related learning. The traces shown in Figure 3 are 

averages of 100 trial runs, each with a different starting seed. All control trials were averaged to 

obtain a single representative value. 

 

                                                     *** FIGURE 3 ABOUT HERE *** 
 
                                        

9.3   Effects of Valence on Action Selection Behavior  

This procedure illustrates a number of direct consequences of applying the Action Selction 

Calculus as described here to an animat under differing valence levels and changing environmental 

conditions. The first stage emulates the essential aspects of a classic “T-Maze” experiment (e.g. 

Dayan and Balleine, 2002), in which the path choice selected (or branch of the ‘T’ in the original) is 

determined solely and immediately by changing needs. The second stage illustrates the effect of the 

extinction rule (L3) to react to environmental change in a timely manner.  

In this set-up the maze (figure 4a) has a start location (center bottom) and two potential sources of 

valence GF (food, say), top right and GW (water), top left. The animat, now fully fed and watered, is 

allowed to explore the maze shown (after Sutton, 1991) for 1000 action cycles. As neither GF nor GW 

have valencing properties (the animat is neither hungry nor thirsty) no Dynamic Policy Map (DPM) is 

formed and Actions are selected at random for exploration. This is a latent learning phase (section 

9.1). Imagine now the animat is made “hungry” (i.e. valence is associated with GF, set manually here, 

by the experimenter) and returned to the start point. A DPM is formed (figure 4b) and the policy path 

is clearly indicated to location GF via the shorter route B. Now imagine the animat is fed, but made 

thirsty (i.e. valence is associated with GW) and returned to the start point. The new DPM formed 

indicates the action path directly to GW, via the shorter path A (figure 4c). The choice point decision is 

totally different but no new learning has taken place between these two trials. 
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Now consider a situation where the animat is hungry but not thirsty (i.e. GF has valence), but 

location B is now blocked. The recomputed DPM will still indicate a path via B (the blockage is 

undiscovered), figure 4d. As the intended (up) action to B now fails over several attempts, the 

anticipatory link to B is extinguished (rule L3, at a rate determined by β). DPM alters to advantage the 

longer path via place A, this is apparent in the simulation as the “preferred action” indicator arrows at 

each maze place are observed to change direction towards the new preferred path. When this reaches 

the point of obstruction (after 15 extinction Actions), the observable behavior of the animat abruptly 

changes as the DPM is reconstructed and a new longer path via A is taken, 4e. This rapid change of 

policy is not predicted by RL. A RL policy map is constructed iteratively and will adapt only slowly 

to this block in the path (but see Sutton, 1991, for manipulation to the explore-exploit tradeoff to 

somewhat improve this).    

                                                               ***  FIGURE 4 ABOUT HERE *** 

10   Discussion 

This paper has proposed the notion of different types of policy map operating within the animal, 

static and dynamic and discussed how they may be combined to exhibit apparently different 

behavioral phenomena under the variety of circumstances the animal may encounter in nature or the 

laboratory. The Dynamic Expectancy Model has been employed as an implemented (SRS/E) 

framework for this discussion and used to perform some illustrative experiments. 

Perhaps one of the enduring controversies surrounding behavior selection strategies, why it has 

been so difficult to decide definitively whether actions are selected solely on the basis of sensory 

input or as a combination of motivation and sensory input, is partially resolved by the comparison of 

static to dynamic policy maps. Both are predicated on the notion that actions are selected on the basis 

of sensory input. Key differentiators include whether the same sense modality always gives rise to the 

same action, or varies according to the current and varying needs of the organism, and how learning is 

achieved. It is easy to interpret either situation as “motivated”. In one case, the latter, this is so. In the 

static case, the sequence of actions taken are easily interpreted as being motivated by an observer, as 

they appear to follow a course of actions leading directly to a physiologically necessary outcome. The 
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dynamic case is clearly demonstrated in maze like tasks where one apparently identical decision point 

calls for different actions according to the level of motivation (left for thirst, right for food, for 

instance), section 9.3. 

Differences in strategy conventionally hinge on the necessity of external reinforcing reward during 

learning. Learning in S-R behaviorism depends on the presence of reward, which may (or may not) be 

propagated to update otherwise static policy maps. External reinforcement of this form is, of course, 

not required for anticipatory learning. Classic latent learning experiments (section 9.1) provide clear 

indication that external reward is indeed not required for learning. The valence level pre-bias 

experiment reminds us that anticipatory learning need not be independent of reward (section 9.2).   

Section 8 identified three possible stages in the “evolution” of the policy map. Initially where each 

reactive SA unit is independent of the others and a form of conflict resolution based on priorities is 

applied to determine the final selected behavior. In the next stage, Signs act as IRM-like releasing 

enablers to control the expression of sub-sets of the animal’s overall external behavior. Maes’ (1991) 

architecture, with its explicit three-part (SAS) description of the structure of a static policy map, with 

explicit motivator links, but without explicit hierarchical control and without a proposed learning 

mechanism, acts as a bridge between the static and fully dynamic approaches to policy map 

construction.  

In the context of this analysis, Catania’s (1988) description of the operant three-part contingency 

(section 2.4), described in the light of this formulation, looks suspiciously like Tolman’s (1932) Sign-

Gestalt Expectancy (section 2.5), an explicitly anticipatory three-part Sign-Action-Sign (i.e. SAS) 

link. It seems unlikely that Skinner, as a staunch behaviorist, would have approved (Bjork, 1993). 

This level of analysis has identified and draws attention to the distinct possibility that these two 

largely antagonistic schools of thought are described by the same underlying phenomena; apparently 

only separated by a choice of different experimental conditions applied to the animal (i.e. the Skinner 

box vs. maze running) and, perhaps more significantly, with diametrically opposing interpretations on 

the results from those experiments. Of course, the results and outcomes of these experimental 

procedures from both traditions are not affected by this new treatment, but they are now unified into a 

single interpretation.  
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Much remains that can be done; the Action Selection Calculus lays a ground plan, but the devil 

remains in the detail. There exists a truly vast back catalogue of experimental data from the last 100 

years of investigations that might be revisited in the light of this framework. Two substantive 

questions remain: (i) whether the link types, propagation and learning rules presented sufficiently 

describe the five factor theories and (ii) whether, even taken together as a whole, the five factor 

theories are sufficient to explain all animal behavior.  

On the first, the theories are based on these experiments and much falls into place as a 

consequence. On the second, it seems unlikely – as evolutionary pressure has lead to incredibly 

diverse behavior patterns and mechanisms. The widespread nature of these experimental forms 

testifies to their recurring significance in the overall development of behavior. No single neural 

mechanism can or need be postulated, rather these strategies appear to have reoccurred frequently in 

different guises, in different species and different parts of the brain. Perhaps as a result of gradual 

evolutionary pressure, but equally because the strategy fits many different circumstances, much as 

mechanisms of evolutionary convergence are conjectured to recreate different physical forms with 

similar functions (e.g. Nishikawa, 2002). 

11    Summary and Conclusions  

This paper has presented a high-level view of the action selection properties of five central theories 

of natural action selection and learning and combined them into a single Action Selection Calculus. 

Each of these theories holds that actions are selected on the basis of prevailing sensory conditions. 

They do not agree on how this occurs, yet it is clear that each of the factor theories account for only a 

part of an individual animal’s total behavioral repertoire and that what the experimenter observes is at 

least partly due to the design of their experiments. The paper has developed a set of five propagation 

rules and four learning strategies over three connection types to encapsulate and unify these otherwise 

apparently disparate approaches.  

In conclusion, the Action Selection Calculus sets out to achieve several related goals. First, in 

providing a concise but comprehensive semi-formal definition of the various processes that go to 

make up the different behavioral and learning components that comprise the complete behavioral 



  38 

repertoire of an animal. Second, the Calculus provides a viable structure with which to address one of 

the perennial problems in describing the different theories of animal learning – how to present the 

various theories as anything other than independent research topics. Third, it explicitly attempts to 

provide a framework with which to consider the functional relationships between the different factor 

parts, particularly in relation to the integration of innate (static) and learned (dynamic) policies. 

Fourth, the Calculus makes strong assertions about the sign anticipatory nature of the learning 

process. It is hoped that these will be considered by the neurological research community in parallel 

with more conventional reward based investigations (e.g. Schultz, 1998; Dayan and Balleine, 2002). 

Fifth, the methods of anticipatory learning encapsulated by the learning rules L2, L3 and L4 are 

clearly distinct from, but related to methods of reinforcement learning. While the discussion in this 

paper has been motivated from observations of animal behavior and tested empirically with a 

computer simulation the parallels with machine learning techniques are clear. It is therefore hoped 

that the same methods of analytic analysis will be applied to this class of algorithm as have been 

applied to reinforcement and neural network learning. Lastly, the Action Selection Calculus provides 

Agent and Animat researchers with a design specification for behavior selection methods, founded 

directly on a broad interpretation of natural learning and action selection theories. 
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APPENDIX ONE 

Table of notational symbols used 

*** TABLE 1 ABOUT HERE *** 

 

APPENDIX TWO 

The SRS/E Implementation 

SRS/E acts as a benchmark implementation for the principles expressed in the Action Selection 

Calculus. The Action Selection Calculus is largely presented in implementation independent terms 

and might equally be coded directly in the style of a production rule system (e.g. Jones and Ritter, 

2003; Klahr, Langley and Neches, 1987) or artificial neural network (e.g. Bishop, 1995). Other styles 

of implementation would highlight other aspects of the behavioral action selection and learning issues 

discussed and are to be welcomed. 

Signs, Actions and the Link types are encoded directly as object data structures and stored in 

indexed and linked lists: the sign_list (S), action_list (A), behavior_list (SA) and hypothesis_list (for 

SS and SAS). Note that in SRS/E, SS and SAS links are considered as “micro-hypotheses” (μ-

hypotheses), reflecting the notion that they each encapsulate a small, testable, predictive hypothesis 

about the structure of the environment. New links may be added to the lists at any time by learning. 

Each list object stores the parameters (activations {0, 1}, valences, weights, corroboration values, 

etc.) associated with its element and these are updated according to the principles of the propagation 

and learning rules presented here.  

Execution cycle description 

The execution of the system is based on a recurring cycle, each of which is considered to be one time 

step. The propagation and learning rules are applied to links in each list at each cycle. A detailed 

graphical representation of the SRS/E execution cycle is given in (Witkowski, 2003). The ordering of 

operations within the cycle is significant. At the start of the cycle, the activation values of the Signs 

are updated by interrogating the environment. Signs may be considered as detectors, in SRS/E Sign 

activation values are 0 or 1 (detected or not detected). Next, previously recorded predictions (in the 
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prediction_list) are compared to the current Sign activations and the anticipatory learning rules (L2 

and L3) applied and SS and SAS corroboration values c are adjusted. SS links in the hypothesis_list 

are sub_activated according to rule P2. SA links in the behavior_list are evaluated by rule P1 

(direct_activation) and candidate actions selected – this is the evaluation of the static policy map. 

Valence (goal) setting is considered a type of behavior in SRS/E (but may be changed by 

experimenter intervention) and Sign valences are updated if indicated by activations in the 

behavior_list.  

If any Signs currently have valence, the top-goal v’ is selected and a dynamic policy map 

constructed by repeated propagation of valence and sub_valence (by rule P4, valence transfer), until 

no more propagation is possible. Next, Rule P5 (valence_activation) is applied to determine any 

candidate actions for activation from the DPM, comparing active Signs from the sign_list to sub-

valenced Signs in the hypothesis_list. The Action associated with the SAS link in the DPM with the 

highest valence value and a currently active Sign is selected. The highest weight value w from the 

candidate actions from the SPM is compared to the valence value of the top goal (v’) at a subsumption 

point and the winning Action sent to the motor sub-system or actuators for final expression. When no 

action is available for expression, a default, low priority, exploratory action is selected (typically at 

random) from the action_list. Provision is made in the current SRS/E implementation to select default 

actions on the basis of guided exploration (e.g. prioritized sweeping, Moore and Atkeson, 1993) to 

improve search performance. Once the expressed Action has been chosen, rule P3 (Prediction) may 

be applied to all SS and SAS rules and the prediction_list updated for evaluation in future cycles. 

Finally, once the Action has been expressed rules L1 (reinforcement rule) updating the static policy 

map and L4 (anticipatory link formation) creating new SS and SAS links to be added to the 

hypothesis_list, may be applied. The cycle then repeats. 
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End-notes: 
 
1 An action selection policy map may be viewed as a set of situation – action rules for each of many states or 
sensed conditions. Policy maps differ from planning methods (Russell and Norvig, 2003, sections II and IV), 
which typically deliver a prescribed sequence of actions leading to a desired situation (but see Schoppers, 1987, 
for a combined method).  
 
2 In this paper, a static policy map persists throughout the lifetime of the animal or animat, whereas dynamic 
policy maps are created in response to some immediate need and are transient. 
 
3 Note that the use of the term “S-R Behaviorism” here is distinct from “behaviorist school”, which promoted 
the idea that all behavior of any significance could be observed, recorded and measured. All the approaches 
described here fall broadly into this category, which is not without its critics and in the case of human behavior 
seemingly with considerable justification (Velmans, 2000, for instance). The terms “associationist” and 
“cognitive” are likewise heavily over-loaded and are used with restricted historical meaning here. 
 
4 RL techniques don’t, of course, actually stipulate that reward must be external, but external (food) reward is 
clearly indicated in this experimental procedure as the source of drive and motivation. 
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Table 1 
 
 

Symbol Description 
S A Sign, detecting a specific condition 
A An Action, expressible by the agent 
∧ Conjunction (AND), read as “coincident with” 
∨ Disjunction (OR) 
w

t±τ Causal (S-R) link connection in an SA link 
v, c

t±τ Anticipatory link connection in an SS or SAS link 
ac(A) The action cost of performing Action A (ac(A)≥1, by definition) 
t±τ Cross-link time delay (t) and range (τ) 
w Weight, strength of connection in an SS link 
c Corroboration value associated with SS or SAS link 
v(S) Current valence level of Sign S 
v'(S) Valence level of the current top-goal (S) 
α The corroboration rate, update factor for c for a successful prediction 
β The extinction rate, update factor for c for a failed prediction 
λ Learning rate, probability that a learning rule L4 activation will result 

in a new SS or SAS link 
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Figure 1 
 

Latent Learning (λ = 0.25, α  = 0.5, β  = 0.2)
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Figure 2 
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Figure 3 
 

Valence Level Pre-bias (λ = 0.1, λ ' = 1.0)
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Figure 4 
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